北斗卫星导航系统

空间信号接口控制文件

公开服务信号B2b(1.0版)

中国卫星导航系统管理办公室

二〇二〇年七月

日	콫
н	~~

1	声明		
2	文件著	范畴	
3	北斗	系统概	述
	3.1	空间	星座
	3.2	坐标	系统
	3.3	时间,	系统
4	信号	時性 …	
	4.1	信号约	告构
	4.2	信号证	周制
	4.3	逻辑日	电平
	4.4	极化力	方式
	4.5	载波材	 1位噪声
	4.6	杂散	
	4.7	相关打	员耗
	4.8	数据/	码一致性
	4.9	信号-	一致性
	4.10	地面	接收功率电平
5	测距码	码特性	
6	导航日	电文结	构
	6.1	导航日	电文概述
		6.1.1	导航电文类型
		6.1.2	校验码
	6.2	B-CN	AV3 导航电文 ······11
		6.2.1	基本描述
		6.2.2	编码方案和编码参数
		6.2.3	编排格式
7	导航	电文参	数和算法

7.1	测距码	码编号	8
7.2	信息	类型	8
7.3	系统田	时间参数 ⋯⋯⋯⋯⋯⋯⋯1	8
7.4	钟差	参数	9
	7.4.1	参数说明	9
	7.4.2	用户算法	9
7.5	群延过	迟修正参数	9
	7.5.1	参数说明	9
	7.5.2	用户算法	0
7.6	星历刻	参数	:0
	7.6.1	参数说明	0
	7.6.2	用户算法	2
7.7	电离	层延迟改正模型参数 ······2	3
	7.7.1	参数说明	3
	7.7.2	单频用户算法	3
7.8	中等精	精度历书	8
	7.8.1	参数说明	8
	7.8.2	用户算法	9
7.9	简约	历书	0
	7.9.1	参数说明	0
	7.9.2	用户算法	1
7.10	地球	定向参数	1
	7.10.1	参数说明	1
	7.10.2	用户算法	1
7.11	BDT	C-UTC 时间同步参数	2
	7.11.1	参数说明	2
	7.11.2	用户算法	3
7.12	BDT	T-GNSS 时间同步参数	3
	7.12.1	参数说明	3
	7.12.2	用户算法	4

	7.13	卫星健康状态
	7.14	卫星完好性状态标识
	7.15	空间信号精度指数
	7.16	空间信号监测精度指数
8	缩略语	吾
附	录 多	进制 LDPC 编译码方法及示例

图目录

图 5-1	B2b 信号 I 支路测距码发生器
图 6-1	B-CNAV3 帧结构
图 6-2	H _{81,162} 读取流程图
图 6-3	B-CNAV3 信息类型 10 编排格式
图 6-4	B-CNAV3 信息类型 30 编排格式
图 6-5	B-CNAV3 信息类型 40 编排格式
图 6-6	星历 I (共 203 比特)
图 6-7	星历 II (共 222 比特)
图 6-8	钟差参数(共69比特)15
图 6-9	SISAI _{oc} (共22比特)15
图 6-10	电离层延迟改正模型参数(共 74 比特) ······15
图 6-11	BDT-UTC 时间同步参数(共 97 比特)15
图 6-12	简约历书(共38比特)16
图 6-13	EOP 参数(共 138 比特)
图 6-14	BGTO 参数(共 68 比特)16
图 6-15	中等精度历书(共156比特)

表目录

表 3-1	BDCS 参考椭球的基本常数	3
表 4-1	B2b 信号 I 支路信号结构	5
表 4-2	逻辑电平与信号电平之间的映射关系	6
表 4-3	地面接收的最小功率电平	7
表 5-1	B2b 信号 I 支路测距码参数	8
表 6-1	B-CNAV3 导航电文各参数说明	6
表 7-1	信息类型定义	8

©中国卫星导航系统管理办公室 2020

表 7-2	系统时间参数定义及说明
表 7-3	钟差参数定义及说明
表 7-4	群延迟参数定义及说明
表 7-5	星历参数定义
表 7-6	星历参数说明
表 7-7	星历用户算法
表 7-8	电离层延迟改正模型参数说明
表 7-9	<i>n_i</i> 和 <i>m_i</i> 对应取值 ·······24
表 7-11	中等精度历书参数定义及说明
表 7-12	卫星健康信息定义
表 7-13	中等精度历书参数的用户算法
表 7-14	简约历书参数定义
表 7-15	历书参考时刻参数定义及说明
表 7-16	地球定向参数定义及说明
表 7-17	地球定向参数用户算法
表 7-18	BDT-UTC 时间同步参数定义及说明
表 7-19	BDT-GNSS 时间同步参数定义及说明
表 7-20	卫星健康状态参数定义
表 7-21	卫星完好性状态标识定义

1 声明

中国卫星导航系统管理办公室负责北斗卫星导航系统空间信号接口控制文件(以下简称 ICD)的编制、修订、发布和维护等工作,并保留本文件的最终解释权。

2 文件范畴

北斗卫星导航系统简称北斗系统(BDS),分为北斗一号、北斗二号和北斗三号三 个建设发展阶段。

本文件定义了北斗三号中圆地球轨道(MEO)卫星和倾斜地球同步轨道(IGSO) 卫星 B2b 信号定位导航授时服务的相关内容。B2b 信号上提供的其它服务另文规定。

3 北斗系统概述

3.1 空间星座

北斗三号标称空间星座由 3 颗地球静止轨道(GEO)卫星、3 颗 IGSO 卫星和 24 颗 MEO 卫星组成,并视情部署在轨备份卫星。GEO 卫星轨道高度 35786 千米,分别 定点于东经 80 度、110.5 度和 140 度; IGSO 卫星轨道高度 35786 千米,轨道倾角 55 度; MEO 卫星轨道高度 21528 千米,轨道倾角 55 度。

3.2 坐标系统

北斗系统采用北斗坐标系(BDCS)。北斗坐标系的定义符合国际地球自转服务组织(IERS)规范,与 2000 中国大地坐标系(CGCS2000)定义一致(具有完全相同的参考椭球参数),具体定义如下:

(1) 原点、轴向及尺度定义

原点位于地球质心;

Z 轴指向 IERS 定义的参考极 (IRP) 方向;

X 轴为 IERS 定义的参考子午面(IRM)与通过原点且同 Z 轴正交的赤道面的交线; Y 轴与 Z、X 轴构成右手直角坐标系;

长度单位是国际单位制(SI)米。

(2) 参考椭球定义

BDCS 参考椭球的几何中心与地球质心重合,参考椭球的旋转轴与 Z 轴重合。 BDCS 参考椭球定义的基本常数见表 3-1。

序号	参数	定义
1	长半轴	a=6378137.0 m
2	地心引力常数(包含大气层)	μ =3.986004418×10 ¹⁴ m ³ /s ²
3	扁率	f=1/298.257222101
4	地球自转角速度	$\dot{\Omega}_{e} = 7.2921150 \times 10^{-5} \text{ rad/s}$

表 3-1 BDCS 参考椭球的基本常数

3.3 时间系统

北斗系统的时间基准为北斗时(BDT)。BDT 采用国际单位制(SI)秒为基本单位

连续累计,不闰秒,起始历元为2006年1月1日协调世界时(UTC)00时00分00秒。 BDT 通过UTC(NTSC)与国际UTC建立联系,BDT与国际UTC的偏差保持在50 纳秒以内(模1秒)。BDT与UTC之间的闰秒信息在导航电文中播报。

4 信号特性

本章所描述的信号特性,是针对以载波频率 1207.14MHz 为中心的 20.46MHz 带宽内的 B2b 信号 I 支路。

4.1 信号结构

B2b 信号 I 支路的载波频率、调制方式及符号速率见表 4-1。

表 4-1 B2b 信号 I 支路信号结构

信号	载波频率(MHz)	调制方式	符号速率(sps)
B2b 信号 I 支路	1207.14	BPSK (10)	1000

4.2 信号调制

B2b 信号 I 支路分量 *s*_{B2b_1}(*t*) 由导航电文数据 *D*_{B2b_1}(*t*) 和测距码 *C*_{B2b_1}(*t*) 调制产生, *s*_{B2b_1}(*t*) 的数学表达式如下:

$$s_{\text{B2b}_{I}}(t) = \frac{1}{\sqrt{2}} D_{\text{B2b}_{I}}(t) \cdot C_{\text{B2b}_{I}}(t)$$
(4-1)

式中, D_{B2b_1}(t)的数学表达式如下:

$$D_{\text{B2b}_{-}\text{I}}(t) = \sum_{k=-\infty}^{\infty} d_{\text{B2b}_{-}\text{I}}[k] p_{T_{\text{B2b}_{-}\text{I}}}(t - kT_{\text{B2b}_{-}\text{I}})$$
(4-2)

其中, d_{B2b_1} 为 B2b 信号 I 支路的导航电文数据码, T_{B2b_1} 为相应的数据码片宽度。 $p_{T_{B2b_1}}(t)$ 是宽度为 T_{B2b_1} 的矩形脉冲。

c_{B2b_I}测距码的数学表达式如下:

$$C_{\text{B2b}_{I}}(t) = \sum_{n=-\infty}^{\infty} \sum_{k=0}^{N_{\text{B2b}_{I}}-1} c_{\text{B2b}_{I}}[k] p_{T_{c_{-}\text{B2b}_{I}}}\left(t - \left(N_{\text{B2b}_{I}}n + k\right)T_{c_{-}\text{B2b}_{I}}\right)$$
(4-3)

其中, *c*_{B2b_1}为 I 支路分量的测距码序列(取值为±1); *N*_{B2b_1}为对应分量的测距码码 长,其值为 10230; *T*_{c_B2b_1}=1/*R*_{c_B2b_1}为 B2b 信号 I 支路的测距码码片宽度, *R*_{c_B2b_1}=10.23 Mbps 为 B2b 信号 I 支路的测距码速率; *P*_{T_c_B2b_1}(*t*) 是宽度为*T*_{c_B2b_1}的矩形脉冲。

4.3 逻辑电平

用于调制信号的逻辑电平与信号电平之间的对应关系见表 4-2。

夜 4-2 这 理 电十 可 后 亏 电 十 之 向 时 妖 别 天 赤		
逻辑电平	信号电平	
1	-1.0	
0	+1.0	

表 4-2 逻辑电平与信号电平之间的映射关系

4.4 极化方式

卫星发射信号为右旋圆极化 (RHCP)。

4.5 载波相位噪声

未调制载波的相位噪声谱密度应满足单边噪声带宽为 10Hz 的三阶锁相环的载波跟踪精度达到 0.1 弧度 (RMS)。

4.6 杂散

卫星发射的杂散信号不超过-50dBc。

4.7 相关损耗

由卫星发射信号失真导致的相关损耗不超过0.6dB。

4.8 数据/码一致性

每个数据符号的边沿与码片的边沿对齐,周期性的测距码第一个码片的起始时刻 与数据符号位起始时刻对齐。

4.9 信号一致性

任意信号分量间伪码相位互差不超过10纳秒。

4.10 地面接收功率电平

当卫星仰角大于 5 度,在地球表面附近的接收机右旋圆极化天线为 0dBi 增益(或 线性极化天线为 3dBi 增益)时,卫星发射的导航信号到达接收机天线输出端的最小功 率电平见表 4-3。

©中国卫星导航系统管理办公室 2020

夜4-3 地面按收的取小切竿电十			
信号	卫星类型	最小接收功率(dBW)	
B2b 信号	MEO 卫星	-160	
I 支路	IGSO 卫星	-162	

表 4-3 地面接收的最小功率电平

B2b 信号 I 支路具有以下特性: 波束轴向相对于地球边缘滚降不超过 2dB。

5 测距码特性

B2b 信号 I 支路测距码速率为 10.23Mcps,码长为 10230,由两个 13 级线性反馈移 位寄存器通过移位及模二和生成的 Gold 码扩展得到。生成多项式如下所示。

B2b 信号 I 支路码:

$$g_1(x) = 1 + x + x^9 + x^{10} + x^{13}$$

$$g_2(x) = 1 + x^3 + x^4 + x^6 + x^9 + x^{12} + x^{13}$$
(5-1)

具体实现如图 5-1 所示。

图 5-1 B2b 信号 I 支路测距码发生器

其中,寄存器1的初始值均为全1,寄存器2的初始值在表5-1中给出,排列方式为[*s*_{2,1},*s*_{2,2},*s*_{2,3},...,*s*_{2,13}]。在测距码周期起始时刻,寄存器1和寄存器2同步复位;测距码周期中,第8190码片的结束时刻,寄存器1需复位。重复以上过程,得到长度为10230的测距码。

B2b 信号 I 支路共有 53 个测距码,具体参数见表 5-1。其中,头 24 个码片和末尾 24 个码片用八进制表示,高位(MSB)先传。

PRN 号	寄存器2初始值(二进制)	头 24 个码片(八进制)	末尾 24 个码片(八进制)
6	1000110101110	42471422	44530033
7	1000111101110	42071026	63454537
8	1000111111011	10070621	52114120
9	1001100101001	32631660	15654621
10	1001111011010	51031210	12615765
11	1010000110101	24752203	23740542
12	1010001000100	67353533	07467654

表 5-1 B2b 信号 I 支路测距码参数

PRN 号	寄存器2初始值(二进制)	头 24 个码片(八进制)	末尾 24 个码片(八进制)
13	1010001010101	25353617	52575257
14	1010001011011	11351722	55226274
15	1010001011100	61351343	01160270
16	1010010100011	16550441	50756326
17	1010011110111	04153547	27542214
18	1010100000001	37651752	10640254
19	1010100111110	40652553	14350465
20	1010110101011	12451253	57452211
21	1010110110001	34450664	00071604
22	1011001010011	15313657	10263607
23	1011001100010	56312563	13020015
24	1011010011000	71510447	47474176
25	1011010110110	44513562	16076344
26	1011011110010	54112445	55540654
27	1011011111111	00111432	62507667
28	1011100010010	55610115	63416213
29	1011100111100	60613030	32014021
30	1011110100001	36410161	43533653
31	1011111001000	73013021	61313161
32	1011111010100	65010372	03246551
33	1011111101011	12013173	07756360
34	1011111110011	14011703	01251744
35	1 1 0 0 0 0 1 0 1 0 0 0 1	35360744	27367153
36	1 1 0 0 0 1 0 0 1 0 1 0 0 0	65561461	77223601
37	1 1 0 0 0 1 0 1 1 0 1 1 1	04561533	11666400
38	1 1 0 0 1 0 0 0 1 0 0 0 1	35661303	35322566
39	1 1 0 0 1 0 0 0 1 1 0 0 1	31661552	07107560
40	1100110101011	12463623	46612101
41	1100110110001	34462214	11231514
42	1100111010010	55062742	50710211
43	1101001010101	25323543	34555532
44	1101001110100	64320656	03034702
45	1101011001011	13121550	75766350
46	11011010101111	05221747	50550432
47	1 1 1 0 0 0 0 1 1 0 1 0 0	64741521	45030464
48	1 1 1 0 0 1 0 0 0 0 0 1 1	17540076	01547030
49	1 1 1 0 0 1 0 0 0 1 0 1 1	13540627	33762036
50	1 1 1 0 0 1 0 1 0 0 0 1 1	16541066	57616221
51	1110010101000	72540775	55327237

PRN 号	寄存器2初始值(二进制)	头 24 个码片(八进制)	末尾 24 个码片(八进制)
52	1 1 1 0 1 0 0 1 1 1 0 1 1	10640752	16072557
53	1 1 1 0 1 1 0 0 1 0 1 1 1	05442537	64716537
54	1 1 1 1 0 0 1 0 0 1 0 0 0	73301542	21130334
55	1 1 1 1 0 1 0 0 1 0 1 0 0	65500312	16343063
56	1 1 1 1 0 1 0 0 1 1 0 0 1	31503365	21304050
57	1 1 1 1 0 1 1 0 1 1 0 1 0	51102623	36574544
58	1 1 1 1 0 1 1 1 1 1 0 0 0	70100474	31701764

©中国卫星导航系统管理办公室 2020

6 导航电文结构

6.1 导航电文概述

6.1.1 导航电文类型

B2b 信号 I 支路采用 B-CNAV3 电文格式。

6.1.2 校验码

B-CNAV3 导航电文采用了循环冗余校验(CRC),具体实现方式为 CRC-24Q,其 生成多项式为:

$$g(x) = \sum_{i=0}^{24} g_i x^i$$
 (6-1)

其中, $g_i = \begin{cases} 1, i = 0, 1, 3, 4, 5, 6, 7, 10, 11, 14, 17, 18, 23, 24 \\ 0, 其它 \end{cases}$ 。

$$g(x) = (1+x)p(x)$$
 (6-2)

式中, $p(x) = x^{23} + x^{17} + x^{13} + x^{12} + x^{11} + x^9 + x^8 + x^7 + x^5 + x^3 + 1$ 。 长度为 k 的信息序列 m_i ($i = 1 \sim k$)可以表示为以下多项式: $m(x) = m_k + m_{k-1}x + m_{k-2}x^2 + \dots + m_1x^{k-1}$ (6-3)

项式
$$m(x)x^{24}$$
除以生成多项式 $g(x)$,得到余式如下:

$$R(x) = p_{24} + p_{23}x + p_{22}x^2 + \dots + p_1x^{23}$$
(6-4)

式中, *p*₁ *p*₂.....*p*₂₄依次输出构成 CRC 校验序列。 实现过程中,寄存器初始值设为全 0。

6.2 B-CNAV3 导航电文

6.2.1 基本描述

劣

B-CNAV3 导航电文包括基本导航信息和基本完好性信息。每帧电文长度为 1000 符号位,符号速率为 1000sps,播发周期为 1 秒。基本的帧结构定义如图 6-1 所示。

图 6-1 B-CNAV3 帧结构

每帧电文的前 16 符号位为帧同步头 (Pre),其值为 0xEB90,即 1110 1011 1001 0000,采用高位先发。PRN 号为 6 比特,无符号整型。

每帧电文在纠错编码前的长度为 486 比特,包括信息类型(6 比特)、周内秒计数(20 比特)、电文数据(436 比特)、循环冗余校验位(24 比特)。信息类型、周内秒计数、电文数据均参与循环冗余校验计算。采用 64 进制 LDPC(162,81)编码后,长度为 972 符号位。

6.2.2 编码方案和编码参数

B-CNAV3 导航电文采用 64 进制 LDPC(162,81)编码,其每个码字符号由 6 比特构成,定义于本原多项式为 $p(x)=1+x+x^6$ 的有限域 GF(2⁶)。多进制符号与二进制比特的映射采用向量表示法,且高位在前。信息长度 k=81 码字符号,即 486 比特。其校验矩阵是一个 81×162 稀疏矩阵 $H_{81,162}$,定义于本原多项式为 $p(x)=1+x+x^6$ 的有限域 GF (2⁶),前 81×81 部分对应信息符号,后 81×81 部分对应校验符号,其非零元素的位置定义如下:

	$H_{81,16}$	2,index=	[
19	67	109	130	27	71	85	161	31	78	96	122	2	44	83	125
26	71	104	132	30	39	93	154	4	46	85	127	21	62	111	127
13	42	101	146	18	66	108	129	27	72	100	153	29	70	84	160
23	61	113	126	8	50	89	131	34	74	111	157	12	44	100	145
22	60	112	128	0	49	115	151	6	47	106	144	33	53	82	140
3	45	84	126	38	80	109	147	9	60	96	141	1	43	82	124
20	77	88	158	37	54	122	159	3	65	104	149	5	47	86	128
0	42	81	123	32	79	97	120	35	72	112	158	15	57	93	138

©中国卫星导航系统管理办公室 2020

22	75	107	143	24	69	102	133	1	50	116	152	24	57	119	135
17	59	95	140	7	45	107	145	34	51	83	138	14	43	99	144
21	77	106	142	16	58	94	139	20	68	110	131	2	48	114	150
10	52	91	133	25	70	103	134	32	41	95	153	14	56	91	137
33	73	113	156	28	73	101	154	4	63	102	147	6	48	87	129
8	46	105	146	30	80	98	121	41	68	119	150	35	52	81	139
16	63	114	124	13	55	90	136	31	40	94	155	10	61	97	142
36	56	121	161	29	74	99	155	5	64	103	148	18	75	89	156
36	78	110	148	19	76	87	157	15	65	116	123	11	53	92	134
25	58	117	136	39	66	117	151	11	62	98	143	9	51	90	132
38	55	120	160	7	49	88	130	17	64	115	125				
28	69	86	159	23	76	105	141	12	54	92	135				
40	67	118	152	37	79	108	149	26	59	118	137				

],

其中的每个元素为有限域 GF(2⁶)的多进制符号,其元素按向量表示法表示,如 矩阵听示,

下矩阵所示:

	$H_{81,162}$,element	=[
46	45	44	15	15	24	50	37	24	50	37	15	15	32	18	61
58	56	60	62	37	53	61	29	46	58	18	6	36	19	3	57
54	7	38	23	51	59	63	47	9	3	43	29	56	8	46	13
26	22	14	2	63	26	41	12	17	32	58	37	38	23	55	22
35	1	31	44	44	51	35	13	30	1	44	7	27	5	2	62
16	63	20	9	27	56	8	43	1	44	30	24	5	26	27	37
42	47	37	32	38	12	25	51	43	34	48	57	39	9	30	48
63	13	54	10	2	46	56	35	47	20	33	26	62	54	56	60
1	21	25	7	43	58	19	49	28	4	52	44	46	44	14	15
41	48	2	27	49	21	7	35	40	21	44	17	24	23	45	11
46	25	22	48	13	29	53	61	52	17	24	61	29	41	10	16
60	24	4	50	32	49	58	19	43	34	48	57	29	7	10	16
25	11	7	1	32	49	58	19	42	14	24	33	39	56	30	48
13	27	56	8	53	40	61	18	8	43	27	56	18	40	32	61
60	48	2	27	50	54	60	62	58	19	32	49	9	3	63	43
53	35	16	13	23	25	30	16	18	6	61	21	15	1	42	45
20	16	63	9	27	37	5	26	29	7	10	16	11	60	6	49
43	47	18	20	42	14	24	33	43	22	41	20	22	15	12	33
9	41	57	58	5	31	51	30	9	3	63	43				
37	53	61	29	6	45	56	19	33	45	36	34				
19	24	42	14	1	45	15	6	8	43	27	56				

]。

以上矩阵自上而下按栏读取,一栏读完后自左向右换下一栏继续读取。一栏中,每行的4个数字对应矩阵中一行4个非零元素。H_{81,162}的读取规则如图6-2所示。

©中国卫星导航系统管理办公室 2020

图 6-2 H_{81,162}读取流程图

编译码方法及示例见附录。

6.2.3 编排格式

B-CNAV3 导航电文当前定义了 3 个有效信息类型,分别为信息类型 10、30、40, 其编排格式如图 6-3~图 6-5 所示。

图 6-3 B-CNAV3 信息类型 10 编排格式

图 6-4 B-CNAV3 信息类型 30 编排格式

信息 ◀	类型40			— 发射数据流	顺序,音 486	高位先发 bits							
Pre & Const	MesType 6bits	SOW 20bits	BGTO参数 68bits	中等精度历书 156bits	WNa 13bits	toa 8bits	简约历书 38bits	简约历书 38bits	简约历书 38bits	简约历书 38bits	简约历书 38bits	Rev 1bit	CRC 24bits

图 6-5 B-CNAV3 信息类型 40 编排格式

其中,"星历 I"、"星历 II"、"钟差参数"、"SISAI_{oc}"、"电离层延迟改正 模型参数"、"BDT-UTC 时间同步参数"、"简约历书"、"EOP 参数"、"BGTO 参数"、"中等精度历书"均为一组参数构成的数据块,且"星历 I"与"星历 II"构 成一组完整的星历参数。各数据块的详细编排格式如图 6-6~图 6-15 所示。

Ν	1SB								LS	SВ
	t _{oe}	SatType	ΔA	À	Δn_0	$\Delta \dot{n}_0$	M_{0}	е	ω	
	11 bits	2 bits	26 bits	25 bits	17 bits	23 bits	33 bits	33 bits	33 bits	

图 6-6 星历 I (共 203 比特)

M	SB									LS	B
	Ω_0	i ₀	Ω	\dot{i}_0	$C_{\rm is}$	$C_{\rm ic}$	$C_{\rm rs}$	$C_{\rm rc}$	$C_{\rm us}$	$C_{\rm uc}$	
	33 bits	33 bits	19 bits	15 bits	16 bits	16 bits	24 bits	24 bits	21 bits	21 bits	

图 6-7 星历 II (共 222 比特)

Μ	SB			LS	В
	t _{oc}	a_{0}	a_{1}	<i>a</i> ₂	
	11 bits	25 bits	22 bits	11 bits	

图 6-8 钟差参数 (共 69 比特)

М	SB			LS	в
	t _{op}	SISAI _{ocb}	SISAI _{oc1}	SISAI _{oc2}	
	11 bits	5 bits	3 bits	3 bits	

图 6-9 SISAI_{oc} (共 22 比特)

Μ	ISB								LS
	$\alpha_{_{1}}$	$\alpha_{_2}$	$\alpha_{_3}$	$lpha_{_4}$	$\alpha_{_5}$	$\alpha_{_6}$	α_7	$\alpha_{_8}$	α_{9}
	10 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits

图 6-10 电离层延迟改正模型参数(共 74 比特)

M	ASB LSB										
	$A_{0\rm UTC}$	A _{IUTC}	$A_{2\rm UTC}$	$\Delta t_{\rm LS}$	t _{ot}	WN _{ot}	WN _{LSF}	DN	$\Delta t_{\rm LSF}$		
	16 bits	13 bits	7 bits	8 bits	16 bits	13 bits	13 bits	3 bits	8 bits		

图 6-11 BDT-UTC 时间同步参数(共 97 比特)

М	SB					LS	SВ
	PRN _a	SatType	$\delta_{_{A}}$	$\Omega_{_0}$	Φ_0	Health	
	6 bits	2 bits	8 bits	7 bits	7 bits	8 bits	

图 6-12 简约历书(共 38 比特)

М	SB						LS
	t _{eop}	PM_X	• PM _ X	PM_Y	• PM_Y	$\Delta UT1$	$\Delta UT1$
	16 bits	21 bits	15 bits	21 bits	15 bits	31 bits	19 bits

图 6-13 EOP 参数(共 138 比特)

M	SB					LS	SB
	GNSS ID	WN _{0BGTO}	t _{obgto}	$A_{0\rm BGTO}$	A _{1BGTO}	$A_{\rm 2BGTO}$	
	3 bits	13 bits	16 bits	16 bits	13 bits	7 bits	

图 6-14 BGTO 参数(共 68 比特)

MSB

ISB													L
PRN _a	SatType	WN _a	t _{oa}	е	$\delta_{_i}$	\sqrt{A}	$\Omega_{_0}$	Ω	ω	M_{0}	a_{f0}	a_{f1}	Health
6 bits	2 bits	13 bits	8 bits	11 bits	11 bits	17 bits	16 bits	11 bits	16 bits	16 bits	11 bits	10 bits	8 bits

图 6-15 中等精度历书(共 156 比特)

B-CNAV3 导航电文中各参数说明可参见表 6-1 中标示的章节。

表 6-1 B-CNAV3 导航电文各参数说明

序号	电文参数	参数定义及描述
1	PRN	详见 7.1 节
2	MesType	详见 7.2 节
3	SOW	详见 7.3 节
4	WN	详见 7.3 节
5	钟差参数	详见 7.4 节
6	Т _{GDB2bI}	详见 7.5 节
7	星历参数(星历 I、星历 II)	详见 7.6 节
8	电离层延迟改正模型参数	详见 7.7 节
9	中等精度历书	详见 7.8 节
10	WNa	详见 7.9 节
11	t _{oa}	详见 7.9 节
12	简约历书	详见 7.9 节

序号	电文参数	参数定义及描述
13	EOP 参数	详见 7.10 节
14	BDT-UTC 时间同步参数	详见 7.11 节
15	BGTO 参数	详见 7.12 节
16	HS	详见 7.13 节
17	DIF1	详见 7.14 节
18	SIF1	详见 7.14 节
19	AIF1	详见 7.14 节
20	SISAI _{oe}	详见 7.15 节
21	SISAI _{oc}	详见 7.15 节
22	SISMA	详见 7.16 节
23	CRC	详见 6.1.2 节

©中国卫星导航系统管理办公室 2020

7 导航电文参数和算法

7.1 测距码编号

导航电文中播发的测距码 PRN 号为6比特,无符号整型。

7.2 信息类型

信息类型(MesType)用于标识 B-CNAV3 每帧电文的类型,共 6 比特,无符号整型。其定义见表 7-1。

MesType(二进制)	信息类型
000000	无效
001010	信息类型 10
011110	信息类型 30
101000	信息类型 40
其它	预留

表 7-1 信息类型定义

7.3 系统时间参数

B-CNAV3 导航电文播发的系统时间参数包括周内秒计数(SOW)和整周计数 (WN),各参数定义及特性说明见表 7-2。

参数	定义	比特数	比例因子	有效范围	单位
SOW	周内秒计数	20	1	0~604799	S
WN	整周计数	13	1	0~8191	周

表 7-2 系统时间参数定义及说明

周内秒计数(SOW)在 B-CNAV3 所有信息类型中播发。SOW 对应的秒时刻表示 本帧同步头第一个脉冲上升沿所对应的秒时刻。SOW 在北斗时每周日 00 时 00 分 00 秒从零开始计数,在每周的结束时刻被重置为零。

整周计数(WN)为北斗时的整周计数,在 B-CNAV3 信息类型 30 中播发,共 13 比特。WN 以北斗时的起始历元(2006 年 1 月 1 日 00 时 00 分 00 秒 UTC)为起点,从零开始计数。

7.4 钟差参数

7.4.1 参数说明

一组钟差参数包括 t_{α} 、 a_0 、 a_1 、 a_2 ,钟差参数定义及特性说明见表 7-3。

序号	参数	定义	比特数	比例因子	有效范围**	单位		
1	t _{oc}	钟差参数参考时刻	11	300	0~604500	S		
2	a_0	卫星钟偏差系数	25*	2 ⁻³⁴		S		
3	a_1	卫星钟漂移系数	22*	2 ⁻⁵⁰		s/s		
4	<i>a</i> ₂	卫星钟漂移率系数 11 [*] 2 ⁻⁶⁶ s/s ²				s/s ²		
*为2进	*为2进制补码,最高有效位(MSB)是符号位(+或-)。							
**『今北	左"右洲	"范围" 栏山星方沿明 不顾	会粉的右动;	古国具 所 公 空 的 /	台粉上比例田子+	十回确空		

表 7-3 钟差参数定义及说明

**除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定 的最大范围。

7.4.2 用户算法

接收机用户可通过下式计算出信号发射时刻的 BDT 时间:

$$t = t_{\rm sv} - \Delta t_{\rm sv} \tag{7-1}$$

式中, *t* 为信号发射时刻的 BDT 时间,单位为秒; *t*_{sv} 为信号发射时刻的卫星测距 码相位时间,单位为秒; Δ*t*_{sv} 为卫星测距码相位时间偏移,单位为秒,由下式给出:

$$\Delta t_{\rm sv} = a_0 + a_1 (t - t_{\rm oc}) + a_2 (t - t_{\rm oc})^2 + \Delta t_r \tag{7-2}$$

式中, *t*可用*t*_{sv}替代; *Δt*_r是相对论校正项,单位为秒,其值为:

$$\Delta t_r = \mathbf{F} \cdot \boldsymbol{e} \cdot \sqrt{A} \cdot \sin E_k \tag{7-3}$$

式中, e为卫星轨道偏心率, 由本卫星星历参数得到;

 \sqrt{A} 为卫星轨道长半轴的开方,由本卫星星历参数计算得到;

E_k为卫星轨道偏近点角,由本卫星星历参数计算得到;

 $F = -2\mu^{1/2}/C^2$;

μ=3.986004418×10¹⁴ m³/s² 为地心引力常数;

C=2.99792458×10⁸ m/s 为光速。

7.5 群延迟修正参数

7.5.1 参数说明

星上设备群延迟是指卫星信号从星载频率源到卫星发射天线相位中心的传输时延。 星上设备群延迟对码相位测量的影响可通过钟差参数 a₀和群延迟修正参数共同补偿。

19

导航电文播发的 ao 包含了 B3I 信号的星上设备群延迟。

星上设备群延迟(T_{GDB2bI})在 B-CNAV3 电文中播发,以 B3I 信号为基准,用于补偿 B2b 信号 I 支路的时延差。

参数的定义及特性说明见表 7-4。

表 7-4 群延迟参数定义及说明

参数	定义	比特数	比例因子	有效范围**	单位		
T _{GDB2bI}	B2b 信号 I 支路时延差	12*	2 ⁻³⁴		S		
*为2进制补码,最高有效位(MSB)是符号位(+或-)。							
**除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定							
的最大范围。)						

7.5.2 用户算法

对于使用 B2b 信号 I 支路的单频接收机用户,码相位修正量为:

$$\left(\Delta t_{\rm SV}\right)_{\rm B2bI} = \Delta t_{\rm SV} - T_{\rm GDB2bI} \tag{7-4}$$

7.6 星历参数

7.6.1 参数说明

卫星的星历由 18 个准开普勒轨道参数和 1 个卫星轨道类型参数构成,星历参数定 义见表 7-5。

序号	参数	定义
1	t _{oe}	星历参考时刻
2	SatType	卫星轨道类型
3	ΔA	参考时刻长半轴相对于参考值的偏差
4	À	长半轴变化率
5	Δn_0	参考时刻卫星平均角速度与计算值之差
6	$\Delta \dot{n}_0$	参考时刻卫星平均角速度与计算值之差的变化率
7	M_{0}	参考时刻的平近点角
8	е	偏心率
9	ω	近地点幅角
10	$\Omega_{_0}$	周历元零时刻计算的升交点经度
11	i_0	参考时刻的轨道倾角
12	Ω	升交点赤经变化率
13	$\overline{\dot{i_0}}$	轨道倾角变化率
14	C_{is}	轨道倾角的正弦调和改正项的振幅

表 7-5 星历参数定义

©中国卫星导航系统管理办公室 2020

序号	参数	定义
15	$C_{ m ic}$	轨道倾角的余弦调和改正项的振幅
16	$C_{ m rs}$	轨道半径的正弦调和改正项的振幅
17	$C_{ m rc}$	轨道半径的余弦调和改正项的振幅
18	$C_{ m us}$	纬度幅角的正弦调和改正项的振幅
19	$C_{ m uc}$	纬度幅角的余弦调和改正项的振幅

星历参数的特性说明见表 7-6。

序号	参数	比特数	比例因子	有效范围**	单位					
1	t _{oe}	11	300	0~604500	S					
2	SatType ^{****}	2								
3	ΔA^{***}	26*	2 ⁻⁹		m					
4	À	25*	2 ⁻²¹		m/s					
5	Δn_0	17*	2 -44		π/s					
6	$\Delta \dot{n}_0$	23*	2 ⁻⁵⁷		π/s^2					
7	M_0	33*	2^{-32}		π					
8	е	33	2 ⁻³⁴		无量纲					
9	ω	33*	2 ⁻³²		π					
10	Ω	33*	2 ⁻³²		π					
11	$\dot{i_0}$	33*	2 ⁻³²		π					
12	Ω	19*	2^{-44}		π/s					
13	\dot{i}_0	15*	2^{-44}		π/s					
14	$C_{ m is}$	16*	2^{-30}		rad					
15	$C_{ m ic}$	16*	2^{-30}		rad					
16	$C_{ m rs}$	24*	2 ⁻⁸		m					
17	$C_{ m rc}$	24*	2 ⁻⁸		m					
18	$C_{\rm us}$	21*	2 ⁻³⁰		rad					
19	C _{uc}	21*	2 ⁻³⁰		rad					
* 先 2 进生	山沙河 是宣方为位 (MCD) 旦炫早/								

表 7-6 星历参数说明

*为2进制补码,最高有效位(MSB)是符号位(+或-)。

**除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定的最大范围。

***长半轴参考值 $A_{ref} = 27906100m$ (MEO), $A_{ref} = 42162200m$ (IGSO/GEO)。

****SatType 含义(2进制数): 01 代表 GEO 卫星, 10 代表 IGSO 卫星, 11 代表 MEO 卫星, 00 为预留。

7.6.2 用户算法

用户接收机根据接收到的星历参数,可以计算相应卫星(实际是卫星天线相位中心)在北斗坐标系中的坐标,相应的算法如表 7-7。

公式	说明							
$\mu = 3.986004418 \times 10^{14} \text{ m}^3/\text{s}^2$	BDCS 坐标系下的地心引力常数							
$\dot{\Omega}_{\rm e} = 7.2921150 \times 10^{-5} \rm rad/s$	BDCS 坐标系下的地球自转角速度							
$\pi = 3.1415926535898$	圆周率							
$t_k = t - t_{oe} **$	计算与参考时刻的时间差							
$A_0 = A_{\rm ref} + \Delta A *$	计算参考时刻的长半轴							
$A_k = A_0 + \left(\dot{A}\right) t_k$	计算长半轴							
$n_0 = \sqrt{\frac{\mu}{A_0^3}}$	计算参考时刻的卫星平均角速度							
$\Delta n_A = \Delta n_0 + 1/2 \Delta \dot{n}_0 t_k$	计算卫星平均角速度的偏差							
$n_A = n_0 + \Delta n_A$	计算改正后的卫星平均角速度							
$M_k = M_0 + n_A t_k$	计算平近点角							
$M_k = E_k - e\sin E_k$	迭代计算偏近点角							
$\begin{cases} \sin \nu_k = \frac{\sqrt{1 - e^2} \sin E_k}{1 - e \cos E_k} \\ \cos \nu_k = \frac{\cos E_k - e}{1 - e \cos E_k} \end{cases}$	计算真近点角							
$\phi_k = \nu_k + \omega$	计算纬度幅角							
$\left(\delta u_k = C_{\rm us} \sin\left(2\phi_k\right) + C_{\rm uc} \cos\left(2\phi_k\right)\right)$	计算纬度幅角改正项							
$\left\{\delta r_{k}=C_{\rm rs}\sin\left(2\phi_{k}\right)+C_{\rm rc}\cos\left(2\phi_{k}\right)\right.$	计算径向距离改正项							
$\delta i_k = C_{\rm is} \sin(2\phi_k) + C_{\rm ic} \cos(2\phi_k)$	计算轨道倾角改正项							
$u_k = \phi_k + \delta u_k$	计算改正后的纬度幅角							
$r_k = A_k \left(1 - e \cos E_k \right) + \delta r_k$	计算改正后的径向距离							
$i_k = i_0 + \dot{i}_0 \cdot t_k + \delta i_k$	计算改正后的轨道倾角							
$\begin{cases} x_k = r_k \cos u_k \\ y_k = r_k \sin u_k \end{cases}$	计算卫星在轨道平面内的坐标							
$\Omega_{k} = \Omega_{0} + \left(\dot{\Omega} - \dot{\Omega}_{e}\right)t_{k} - \dot{\Omega}_{e}t_{oe}$	计算改正后的 MEO/IGSO 卫星升交点经度							
$\begin{cases} X_k = x_k \cos \Omega_k - y_k \cos i_k \sin \Omega_k \\ Y_k = x_k \sin \Omega_k + y_k \cos i_k \cos \Omega_k \\ Z_k = y_k \sin i_k \end{cases}$	计算 MEO/IGSO 卫星在 BDCS 坐标系中的坐标							
*表达式中, t 是信号发射时刻的 BDT 时间	,即修正信号传播时延后的系统时间。t _k 是t和星历							
参考时刻t _{ee} 之间的总时间差,并考虑了跨过	参考时刻 t_{∞} 之间的总时间差,并考虑了跨过一周开始或结束的时间,即:如果 $t_k > 302400$,就从							
t_k 中减去 604800;如果 $t_k < -302400$ 时,就对 t_k 加上 604800。								

表 7-7 星历用户算法

**长半轴参考值 A_{ref} = 27906100m(MEO), A_{ref} = 42162200m(IGSO/GEO)。

7.7 电离层延迟改正模型参数

7.7.1 参数说明

北斗全球电离层延迟修正模型(BDGIM)包含 9 个参数,用于单频用户接收机修 正信号传播过程中的电离层延迟效应,各参数特性说明见表 7-8。

对于双频用户,可采用双频无电离层组合伪距算法来修正电离层延迟效应。

参数	比特数	比例因子	有效范围**	单位						
$\alpha_{_{1}}$	10	2-3		TECu						
α_{2}	8*	2-3		TECu						
α_{3}	8	2-3		TECu						
$lpha_4$	8	2-3		TECu						
α_{5}	8	-2 ⁻³		TECu						
$lpha_{6}$	8*	2-3		TECu						
α_7	8*	2-3		TECu						
$lpha_{8}$	8*	2-3		TECu						
α_9	8*	2-3		TECu						
*为2进制补码,最高有效位(MSB)是符号位(+或-)。										
**除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定										
的最大范围。										

表 7-8 电离层延迟改正模型参数说明

7.7.2 单频用户算法

北斗全球电离层延迟修正模型(BDGIM)以改进的球谐函数为基础,用户接收机 根据 BDGIM 计算电离层延迟改正值的具体公式如下:

$$T_{ion} = M_{\rm F} \cdot \frac{40.28 \times 10^{16}}{f^2} \cdot \left[A_0 + \sum_{i=1}^9 \alpha_i A_i \right]$$
(7-5)

式中, *T_{ion}*为卫星与接收机视线方向的电离层延迟改正值,单位为米; *M_F*为投影函数,用于垂向和斜向电离层总电子含量(TEC)之间的转换,计算公式见式(7-16); *f* 为当前信号对应的载波频率,单位为赫兹; *a_i*(*i*=1~9)为电离层延迟改正模型参数(见表 7-8),单位为 TECu; *A_i*(*i*=1~9)为根据式(7-10)计算得到的数值; *A*,为根据式(7-13)计算得到的电离层延迟预报值,单位为 TECu。

用户接收机采用 BDGIM 计算卫星与接收机视线方向电离层延迟的具体步骤如下:

(1) 电离层穿刺点位置的计算

以₩表示用户和电离层穿刺点之间的地心张角,单位为弧度,其计算公式为:

$$\psi = \frac{\pi}{2} - E - \arcsin\left(\frac{\text{Re}}{\text{Re} + \text{H}_{\text{ion}}} \cdot \cos E\right)$$
(7-6)

式中, *E*表示卫星高度角,单位为弧度; H_{ion}表示电离层薄层高度; Re表示地球 平均半径。

电离层穿刺点在地球表面投影的地理纬度 % 和地理经度 % 的计算公式为:

$$\begin{cases} \varphi_g = \arcsin(\sin\varphi_u \cdot \cos\psi + \cos\varphi_u \cdot \sin\psi \cdot \cos A) \\ \lambda_g = \lambda_u + \arctan\left(\frac{\sin\psi \cdot \sin A \cdot \cos\varphi_u}{\cos\psi - \sin\varphi_u \cdot \sin\varphi_g}\right) \end{cases}$$
(7-7)

式中, *q_u*表示用户地理纬度, *λ_u*表示用户地理经度, *A*表示卫星方位角, 单位均为弧度。

地固坐标系下,电离层穿刺点在地球表面投影的地磁纬度 *φ_m* 和地磁经度 *λ_m* 的计算 公式为:

$$\begin{cases} \varphi_m = \arcsin\left(\sin\varphi_{\rm M}\cdot\sin\varphi_g + \cos\varphi_{\rm M}\cdot\cos\varphi_g\cdot\cos(\lambda_g - \lambda_{\rm M})\right) \\ \lambda_m = \arctan\left(\frac{\cos\varphi_g\cdot\sin(\lambda_g - \lambda_{\rm M})\cdot\cos\varphi_{\rm M}}{\sin\varphi_{\rm M}\cdot\sin\varphi_m - \sin\varphi_g}\right) \end{cases}$$
(7-8)

式中, φ_{M} 为地磁北极的地理纬度, λ_{M} 为地磁北极的地理经度,单位均为弧度。 日固坐标系下,电离层穿刺点的地磁纬度 φ' 和地磁经度 λ' 的计算公式为:

$$\begin{cases} \varphi' = \varphi_m \\ \lambda' = \lambda_m - \arctan\left(\frac{\sin(S_{lon} - \lambda_M)}{\sin\varphi_M \cdot \cos(S_{lon} - \lambda_M)}\right) \end{cases}$$
(7-9)

式中, S_{lon} 为平太阳地理经度, 单位为弧度; S_{lon} 的计算公式为 $S_{lon} = \pi \cdot (1 - 2 \cdot (t - int(t)))$ 。其中, t表示计算时刻,以约化儒略日(MJD)表示,单位为天; int(·)表示向下取整。

(2) A_i(i=1~9)的计算

A的具体计算公式如下:

$$A_{i} = \begin{cases} \tilde{P}_{|n_{i}|,|m_{i}|}(\sin \varphi') \cdot \cos(m_{i} \cdot \lambda') & m_{i} \ge 0\\ \tilde{P}_{|n_{i}|,|m_{i}|}(\sin \varphi') \cdot \sin(-m_{i} \cdot \lambda') & m_{i} < 0 \end{cases}$$
(7-10)

式中, n_i和m_i对应的取值见表 7-9。

i	1	2	3	4	5	6	7	8	9
n_i/m_i	0/0	1/0	1/1	1/-1	2/0	2/1	2/-1	2/2	2/-2

表 7-9 *n*, 和 *m*, 对应取值

BDS-SIS-ICD-B2b-1.0 2020-07 $\varphi' 与 \lambda' 根据式 (7-9) 计算得到; <math>\tilde{P}_{n,m}$ 表示 n 度 m 阶的归化勒让德函数, $\tilde{P}_{n,m} = N_{n,m} \cdot P_{n,m}$ ($\tilde{P}_{n,m}$ 计算时, n、m 均取绝对值); $N_{n,m}$ 为正则化函数,其计算公式为:

$$\begin{cases} N_{n,m} = \sqrt{\frac{(n-m)! (2n+1) \cdot (2-\delta_{0,m})}{(n+m)!}} \\ \delta_{0,m} = \begin{cases} 1 , m = 0 \\ 0 , m > 0 \end{cases}$$
(7-11)

P""为标准的勒让德函数,其递推计算公式为:

$$\begin{cases} P_{n,n}(\sin\varphi') = (2n-1)!! (1-(\sin\varphi')^2)^{n/2}, & n=m \\ P_{n,m}(\sin\varphi') = \sin\varphi' \cdot (2m+1) \cdot P_{m,m}(\sin\varphi'), & n=m+1 \\ P_{n,m}(\sin\varphi') = \frac{(2n-1) \cdot \sin\varphi' \cdot P_{n-1,m}(\sin\varphi') - (n+m-1) \cdot P_{n-2,m}(\sin\varphi')}{n-m}, \quad \text{ If } \end{cases}$$
(7-12)

其中, $(2n-1)!! = (2n-1) \cdot (2n-3) \cdots 1$, 且 $P_{0,0}(\sin \varphi') = 1$ 。

(3) 电离层延迟预报值4,的计算

A。的具体计算公式为:

$$\begin{cases} A_0 = \sum_{j=1}^{17} \beta_j \cdot B_j, \\ B_j = \begin{cases} \tilde{P}_{[n_j], |m_j|}(\sin \varphi') \cdot \cos(m_j \cdot \lambda') & m_j \ge 0 \\ \tilde{P}_{[n_j], |m_j|}(\sin \varphi') \cdot \sin(-m_j \cdot \lambda') & m_j < 0 \end{cases}$$
(7-13)

式中, $n_j \mathcal{D} m_j$ 的具体取值参见表 7-10, $\tilde{P}_{[n_j \sqcup m_j]}(\sin \varphi')$ 的计算参照式 (7-11)和式 (7-12); $\beta_i(j=1\sim 17)$ 由下式计算得到:

$$\begin{cases} \beta_{j} = a_{0,j} + \sum_{k=1}^{12} \left(a_{k,j} \cdot \cos\left(\omega_{k} \cdot t_{p}\right) + b_{k,j} \cdot \sin\left(\omega_{k} \cdot t_{p}\right) \right) \\ \omega_{k} = \frac{2\pi}{T_{k}} \end{cases}$$
(7-14)

其中, *a_{k,j}* 与*b_{k,j}* 为表 7-10 中 BDGIM 模型的非发播系数,单位为 TECu; *T_k* 为表 7-10 中各非发播系数对应的预报周期; *t_p* 对应当天约化儒略日的奇数整点时刻(01:00:00, 03:00:00, 05:00:00, ..., 23:00:00),单位为天,用户计算时选取距离当前计算时刻最近的 *t_p*使用。

(4) 穿刺点处垂直方向电离层延迟的计算

穿刺点处垂直方向电离层延迟 VTEC (单位为 TECu)的计算公式如下:

$$VTEC = A_0 + \sum_{i=1}^{9} \alpha_i A_i$$
 (7-15)

(5) 穿刺点电离层投影函数 M_F的计算

BDS-SIS-ICD-B2b-1.0 2020-07 电离层穿刺点处的投影函数M_F的计算公式如下:

$$M_{\rm F} = \frac{1}{\sqrt{1 - \left(\frac{\rm Re}{\rm Re + H_{\rm ion}} \cdot \cos(E)\right)^2}}$$
(7-16)

式中, Re、 H_{ion} 及E参数含义同式 (7-6)。

(6) 计算信号传播路径上的电离层延迟改正值

结合穿刺点处的垂向电离层延迟及投影函数,按式(7-5)即可计算得到信号传播 路径上电离层延迟改正值。

上述计算中,相关参数取值建议如下:

电离层薄层高度: $H_{ion} = 400 \text{ km}$;

地球平均半径: Re=6378 km;

地磁北极的地理经度: $\lambda_{M} = \frac{-72.58^{\circ}}{180^{\circ}} \cdot \pi \text{ rad};$ 地磁北极的地理纬度: $\varphi_{M} = \frac{80.27^{\circ}}{180^{\circ}} \cdot \pi \text{ rad}.$ ©中国卫星导航系统管理办公室 2020

	周期 74	Ж	I	ŀ	-	0 S	C.D	0 33	<i>cc.</i> 0	771	0.41	020	0.12	1716	0.121	13 601	10.701	36575	C7.000	12 0001	407071	2014 35	00.4107	1347 00	06.7401	1007 18	01./001
	17	5/-2	-0.12	0	0.21	-0.14	-0.12	-0.03	0.00	0	0	0	0	-0.10	0.05	-0.12	0.07	0.32	0.30	-0.04	-0.01	0.01	0	0	0	0	0
	16	5/2	0	0.12	-0.09	-0.14	0.11	0	0.04	0	0	0	0	-0.03	0.02	-0.11	0.04	0.27	0.10	-0.01	-0.02	-0.01	-0.01	0	0	0	0
	15	5/-1	1.06	-0.12	0.40	0.02	0.01	-0.03	-0.01	0	0	0	0	-0.05	-0.01	0.37	-0.20	0.01	0.20	0.62	0.16	0.15	-0.04	0	0	0	0
	14	5/1	0.68	0.39	0.18	0.07	-0.01	-0.02	0.05	0	0	0	0	0.06	0	-0.03	0.06	0.02	-0.10	-0.08	-0.04	-0.05	-0.04	0	0	0	0
	13	5/0	0.21	0.04	-0.12	0.12	0.08	0	0.01	0	0	0	0	0.15	-0.10	0.14	-0.05	-0.60	-0.32	0.28	0.04	0.09	0.02	0	0	0	0
H	12	4/-2	-0.13	-0.17	-0.25	0.04	0.08	-0.04	-0.10	0	0	0	0	0.03	0.01	0.04	-0.02	0.02	-0.03	0.13	0.02	0.07	0.03	0	0	0	0
页报周期	11	4/2	-0.10	-0.31	0.19	0.11	-0.05	-0.08	0.03	0	0	0	0	0.01	-0.01	-0.07	0.06	-0.05	-0.03	0.00	0.01	0.01	0.02	0	0	0	0
系数及预	10	4/-1	-0.21	-0.28	0.45	0.02	-0.14	0	-0.01	0	0	0	0	-0.07	-0.02	-0.05	0.05	0.35	0.27	-0.15	-0.02	-0.04	-0.01	0	0	0	0
非发播灵	6	4/1	-0.16	0.44	0.34	-0.16	0.04	-0.01	0.02	0	0	0	0	-0.02	-0.04	-0.18	0.08	0.23	0.17	-0.06	-0.03	0.00	-0.01	0	0	0	0
模型的∃	8	4/0	2.28	0.30	0.18	-0.05	0.01	-0.03	-0.01	-0.01	-0.02	-0.02	0	-0.08	0	0.86	-0.36	0.17	0.25	1.58	0.49	0.46	-0.04	0.01	0.04	-0.04	0.07
DGIM :	7	3/-3	-0.40	-0.06	0.04	0.11	0.01	0.05	-0.03	-0.01	0	0	0	-0.02	0.02	0	0.06	0.11	0	-0.17	-0.01	-0.07	0.02	-0.05	0.01	-0.02	0.01
7-10 B	9	3/3	-0.48	0.02	0.02	0	-0.14	-0.03	-0.07	0	0.01	0.01	0	0	0.01	-0.08	-0.03	0	0.04	-0.29	-0.03	-0.11	0.03	-0.05	0.02	-0.02	0
¥	5	3/-2	0.15	0.17	-0.03	0.15	0.15	0.05	-0.01	0.01	-0.01	0.02	0	0.06	0.09	0.09	-0.09	0.27	0.14	0.15	0.02	0.06	-0.01	0.02	-0.03	0.01	-0.01
	4	3/2	-0.03	-0.01	0.16	0.17	-0.11	-0.01	-0.05	0	0	0.01	0.01	-0.10	0.06	-0.02	0.05	0.52	0.36	0.05	0.01	0.05	0.02	0.03	-0.01	0.04	0.00
	3	3/-1	-2.00	0.34	-0.31	0.06	-0.06	0.01	-0.03	0.01	0.01	0.03	0	0.12	0.03	-0.55	0.13	-0.21	-0.38	-1.22	-0.22	-0.37	0.07	-0.07	0.04	-0.01	-0.04
	2	3/1	-1.31	-0.43	-0.20	-0.05	-0.08	-0.03	-0.02	0	-0.02	0	0	-0.02	0.07	0.06	-0.31	-0.14	-0.08	-0.09	-0.11	0.07	0.03	0.13	-0.02	0.08	-0.02
	1	3/0	-0.61	-0.51	0.23	-0.06	0.02	0.01	0	-0.01	0	0	0.01	-0.19	-0.09	-0.18	0.15	1.09	0.50	-0.34	0	-0.13	0.05	-0.06	0.03	-0.03	0.04
	编号;	n_j/m_j	$a_{0,j}$	a_{k_j}	$b_{k,j}$	a_{k_j}	$b_{k,j}$	$a_{k,j}$	$b_{k,j}$	a_{kj}	$b_{k,j}$	a_{k_j}	$b_{k,j}$	a_{kj}	$b_{k,j}$	a_{k_j}	$b_{k,j}$	a_{kj}	$b_{k,j}$	a_{k_j}	$b_{k,j}$	$a_{k,j}$	$b_{k,j}$	$a_{k,j}$	$b_{k,j}$	$a_{k,j}$	$b_{k,j}$
	参数	编号 k	0	-	-	,	4	~	0 0	-	t	u	n	y	•	ſ	~	æ	0	-		10	01	1	=	13	1

BDS-SIS-ICD-B2b-1.0 2020-07

27

7.8 中等精度历书

7.8.1 参数说明

中等精度历书包括 14 个参数,参数定义及特性说明见表 7-11。

序号	参数	定义	比特数	比例 因子	有效范围**	单位
1	PRN _a	本组历书数据对应的卫星 编号	6	1	1~63	
2	SatType ^{***}	卫星轨道类型	2			
3	WN _a	历书参考时刻周计数	13	1		周
4	t _{oa}	历书参考时刻	8	2 ¹²	0~602112	S
5	е	偏心率	11	2 ⁻¹⁶		
6	$\delta_{_i}$	参考时刻轨道倾角相对于 参考值的偏差	11*	2 ⁻¹⁴		π
7	\sqrt{A}	长半轴的平方根	17	2^{-4}		m ^{1/2}
8	$\Omega_{ m e}$	周历元零时刻计算的 升交点经度	16*	2 ⁻¹⁵		π
9	Ω	升交点赤经变化率	11*	2-33		π/s
10	ω	近地点幅角	16*	2^{-15}		π
11	M_0	参考时刻的平近点角	16*	2^{-15}		π
12	a_{f0}	卫星钟偏差系数	11*	2^{-20}		s
13	a_{f1}	卫星钟漂移系数	10*	2-37		s/s
14	Health	卫星健康信息	8			

表 7-11 中等精度历书参数定义及说明

*为2进制补码,最高有效位(MSB)是符号位(+或-)。

**除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定的最大范围。

***SatType 含义(二进制数): 01 代表 GEO 卫星, 10 代表 IGSO 卫星, 11 代表 MEO 卫星, 00 为预留。

Health 表示卫星健康信息, 共 8 比特, 具体含义见表 7-12。

表 7-12 卫星健康信息定义

信息位	数值	定义				
笛 Q 台 (MSD)	0	卫星钟健康				
东o位(MISD)	1	*				
笠った	0	B1C 信号正常				
<i>牙 / '巴</i>	1	B1C 信号不正常**				
- 午 6 心	0	B2a 信号正常				
牙 0位	1	B2a 信号不正常**				
第5位	0	B2b_I 信号正常				

信息位	数值	定义								
	1	B2b_I 信号不正常**								
笠 4。1 位	0	预留								
另 4~1 位	1	预留								
*当第 8 位为 1, 后 7 位均为	10 时表示卫星钟不可用	1,后7位均为1时表示卫星故障或永久关								
闭。	闭。									
**信号不正常指信号功率比额定值低 10dB 以上。										

7.8.2 用户算法

接收机用户可通过下式计算出信号发射时刻的 BDT 时间:

$$t = t_{\rm sv} - \Delta t_{\rm sv} \tag{7-17}$$

其中, *t* 的单位为秒; *t*_{sv}为信号发射时刻的卫星测距码相位时间,单位为秒; Δ*t*_{sv} 为卫星测距码相位时间偏移,单位为秒。

卫星测距码相位时间偏移由下式给出:

$$\Delta t_{\rm sv} = a_{f0} + a_{f1} \left(t - t_{\rm oa} \right) \tag{7-18}$$

其中,历书参考时刻 t_{oa} 是以历书周计数(WN_a)的起始时刻为基准的。

接收机用户利用历书参数计算卫星位置的用户算法见表 7-13。

表 7-13 中等精度历书参数的用户算法

公式	说明				
$\mu = 3.986004418 \times 10^{14} \text{ m}^3/\text{s}^2$	BDCS 坐标系下的地心引力常数				
$\dot{\Omega}_{\rm e} = 7.2921150 \times 10^{-5} \rm rad/s$	BDCS 坐标系下的地球自转角速度				
$\pi = 3.1415926535898$	圆周率				
$A = \left(\sqrt{A}\right)^2$	计算长半轴				
$n_0 = \sqrt{\frac{\mu}{A^3}}$	计算参考时刻的卫星平均角速度				
$t_k = t - t_{oa}^{*}$	计算与参考时刻的时间差				
$M_k = M_0 + n_0 t_k$	计算平近点角				
$M_k = E_k - e\sin E_k$	迭代计算偏近点角				
$\begin{cases} \sin v_k = \frac{\sqrt{1 - e^2} \sin E_k}{1 - e \cos E_k} \\ \cos v_k = \frac{\cos E_k - e}{1 - e \cos E_k} \end{cases}$	计算真近点角				
$\phi_k = \nu_k + \omega$	计算纬度幅角				
$r_k = A \left(1 - e \cos E_k \right)$	计算径向距离				
$\begin{cases} x_k = r_k \cos \phi_k \\ y_k = r_k \sin \phi_k \end{cases}$	计算卫星在轨道平面内的坐标				

©中国卫星导航系统管理办公室 2020

公式	说明			
$\Omega_k = \Omega_0 + (\dot{\Omega} - \dot{\Omega}_{ m e})t_k - \dot{\Omega}_{ m e}t_{ m oa}$	计算改正后的升交点经度			
$i = i_0 + \delta_i^{**}$	计算参考时刻的轨道倾角			
$\begin{cases} X_k = x_k \cos \Omega_k - y_k \cos i \sin \Omega_k \\ Y_k = x_k \sin \Omega_k + y_k \cos i \cos \Omega_k \\ Z_k = y_k \sin i \end{cases}$	计算卫星在 BDCS 坐标系中的坐标			
*表达式中, t 是信号发射时刻的 BDT 时间, 即	修正信号传播时延后的系统时间。t _k 是t和历书			
参考时刻t _{oa} 之间的总时间差,并考虑了跨过一周	开始或结束的时间,即:如果 $t_k > 302400$,就从			
t_k 中减去 604800; 而如果 $t_k < -302400$, 就对 t_k 力	旧上 604800。			
**对于 MEO/IGSO 卫星, $i_0 = 0.30\pi$; 对于 GEO	卫星, $i_0 = 0.00$ 。			

7.9 简约历书

7.9.1 参数说明

简约历书的参数定义及特性说明见表 7-14。

序号	参数	定义	比特数	比例因子	有效范围**	单位
1	PRN _a	本组历书数据对应的卫星 编号	6	1	1~63	
2	SatType ^{*****}	卫星轨道类型	2			
3	$\delta_{\!\scriptscriptstyle A}^{\;***}$	参考时刻长半轴相对于参 考值的偏差	8*	2 ⁹		m
4	$\Omega_{_0}$	周历元零时刻计算的升交 点经度	7*	2 ⁻⁶		π
5	$\Phi_{_0}^{****}$	参考时刻纬度幅角	7*	2 ⁻⁶		π
6	Health	卫星健康信息	8		—	

表 7-14 简约历书参数定义

*为2进制补码,最高有效位(MSB)是符号位(+或-);

**除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定的 最大范围;

*** δ_A 对应的参考值为 A_{ref} = 27906100m (MEO), A_{ref} = 42162200m (IGSO/GEO);

**** $\Phi_0 = M_0 + \omega$;相关参考值: e=0; $\delta_i = 0$, *i*=55度(MEO/IGSO), *i*=0度(GEO);

*****SatType 含义: 01 表 GEO 卫星, 10 代表 IGSO 卫星, 11 代表 MEO 卫星, 00 为预留。

7.9.2 用户算法

简约历书的用户算法与中等精度历书用户算法相同。对于中等精度历书用户算法 中出现的参数,但简约历书没有给出的参数值,将相应参数初始值设为0。

简约历书的历书参考时刻周计数(WN_a)和历书参考时刻(t_{oa})的定义及特性说明见表 7-15。

序号	参数	定义	比特数	比例因子	有效范围	单位
1	WN _a	历书参考时刻周计数	13	1	0~8191	周
2	t _{oa}	历书参考时刻	8	2^{12}	0~602112	S

表 7-15 历书参考时刻参数定义及说明

7.10 地球定向参数

7.10.1 参数说明

地球定向参数(EOP)的定义及特性说明见表 7-16。

参数	定义	比特数	比例因子	有效范围**	单位
$t_{\rm EOP}$	EOP 数据参考时间	16	2^{4}	0~604784	S
$PM _ X$	参考时间 X 轴极移	21*	2-20		弧秒
PM_X	参考时间 X 轴极移 漂移率	15*	2 ⁻²¹		弧秒/天
PM_Y	参考时间 Y 轴极移	21*	2-20		弧秒
PM_Y	参考时间Y轴极移 漂移率	15*	2 ⁻²¹		弧秒/天
$\Delta UT1$	参考时间 UT1-UTC 的 差值	31*	2 ⁻²⁴		S
$\Delta UT1$	参考时间 UT1-UTC 的 差值变化率	19*	2 ⁻²⁵		秒/天

表 7-16 地球定向参数定义及说明

*为2进制补码,最高有效位(MSB)是符号位(+或-)。

**除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定的最大范围。

7.10.2 用户算法

用户使用星历参数计算得到的是卫星天线相位中心在北斗坐标系中的坐标,如果

用户需要将其转换到相应的地心惯性坐标系(ECI)中的坐标,则需使用表 7-17 中提供的算法来获得坐标转换矩阵。完整坐标系转换算法遵循 IERS 规范。

农 /-1/ 地坏足 同参数 用厂 异 么									
公式	说明								
$UT1 - UTC = \Delta UT1 + \Delta \dot{U}T1(t - t_{EOP})$	计算t时刻的世界协调时之差								
$x_{p} = PM X + PM X (t - t_{EOP})$ $y_{p} = PM Y + PM Y (t - t_{EOP})$	计算t时刻的X轴和Y轴极移								
注: t 是信号发射时刻的 BDT 时间。									

表 7-17 地球定向参数用户算法

7.11 BDT-UTC 时间同步参数

7.11.1 参数说明

BDT-UTC 时间同步参数反映了北斗时(BDT)与协调世界时(UTC)之间的关系。 BDT-UTC 时间同步参数的定义及特性说明见表 7-18。

序号	参数	定义	比特数	比例 因子	有效范围**	单位
1	$A_{0\rm UTC}$	BDT 时标相对于 UTC 时标的偏差系数	16*	2 ⁻³⁵		S
2	A _{IUTC}	BDT 时标相对于 UTC 时标的漂移系数	13*	2 ⁻⁵¹		s/s
3	$A_{2\rm UTC}$	BDT 时标相对于 UTC 时标的漂移率系数	7*	2 ⁻⁶⁸		s/s ²
4	$\Delta t_{\rm LS}$	新的闰秒生效前 BDT 相对于 UTC 的累积闰秒改正数	8*	1		S
5	t _{ot}	参考时刻对应的周内秒	16	2 ⁴	0~604784	S
6	WN _{ot}	参考时间周计数	13	1		周
7	WN _{LSF}	闰秒参考时间周计数	13	1		周
8	DN	闰秒参考时间日计数	3	1	0~6	天
9	$\Delta t_{\rm LSF}$	新的闰秒生效后 BDT 相对于 UTC 的累积闰秒改正数	8*	1		S
*为2进	制补码,最	高有效位(MSB)是符号位(+或 -)。			

表 7-18 BDT-UTC 时间同步参数定义及说明

**除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定的最大范围。

7.11.2 用户算法

BDT 和 UTC 的时间偏差计算方法分为三种情况:

(1)由闰秒参考周数 WN_{LSF}与日计数 DN 确定的闰秒时刻还没有来临,并且用户 当前时间与闰秒时刻之差大于 6 个小时。

$$t_{\rm UTC} = (t_{\rm E} - \Delta t_{\rm UTC}) \mod 86400$$
 (7-19)

$$\Delta t_{\rm UTC} = \Delta t_{\rm LS} + A_{\rm 0UTC} + A_{\rm 1UTC} \left(t_{\rm E} - t_{\rm ot} + 604800 \, \left({\rm WN} - {\rm WN}_{\rm ot} \right) \right) +$$
(7-20)

 $A_{2\rm UTC} \left(t_{\rm E} - t_{\rm ot} + 604800 \, \left({\rm WN} - {\rm WN}_{\rm ot} \right) \right)^2$

t_E是指用户估计的 BDT 时间。

(2)用户当前时间处于由闰秒参考周数 WN_{LSF} 与日计数 DN 确定的闰秒时刻的前 6小时与闰秒后 6小时之内。

$$t_{\rm UTC} = W \mod (86400 + \Delta t_{\rm LSF} - \Delta t_{\rm LS})$$
 (7-21)

$$W = ((t_{\rm E} - \Delta t_{\rm UTC} - 43200) \mod 86400) + 43200$$
(7-22)

式中, Δt_{UTC}的计算方法见式 (7-20)。

(3)由闰秒参考周数 WN_{LSF}与日计数 DN 确定的闰秒时刻已经过去,并且用户当前时间与闰秒时刻之差大于 6 个小时。

$$t_{\rm UTC} = (t_{\rm E} - \Delta t_{\rm UTC}) \mod 86400$$
 (7-23)

$$\Delta t_{\rm UTC} = \Delta t_{\rm LSF} + A_{\rm 0UTC} + A_{\rm 1UTC} \left(t_{\rm E} - t_{\rm ot} + 604800 \, \left(\rm WN - \rm WN_{\rm ot} \right) \right) + A_{\rm 2UTC} \left(t_{\rm E} - t_{\rm ot} + 604800 \, \left(\rm WN - \rm WN_{\rm ot} \right) \right)^2$$
(7-24)

7.12 BDT-GNSS 时间同步参数

7.12.1 参数说明

BDT-GNSS 时间同步(BGTO)参数用于计算 BDT 与其它 GNSS 系统时之间的时间偏差。BGTO 参数的定义及特性说明见表 7-19。

序号	参数	定义	比特数	比例因子	有效范围 ^{**}	单位
1	GNSS ID	GNSS 系统标识	3			无量纲
2	WN _{0BGTO}	参考时间周计数	13	1		周
3	$t_{0 m BGTO}$	参考时刻对应的周内时间	16	2^{4}	0~604784	S
4	A _{0BGTO}	BDT 时标相对 GNSS 时 标的偏差系数	16*	2 ⁻³⁵		S
5	A _{lBGTO}	BDT 时标相对 GNSS 时 标的漂移系数	13*	2 ⁻⁵¹		s/s
6	$A_{\rm 2BGTO}$	BDT 时标相对 GNSS 时	7*	2 ⁻⁶⁸		s/s ²

表 7-19 BDT-GNSS 时间同步参数定义及说明

©中国卫星导航系统管理办公室 2020

序号	参数	定义	比特数	比例因子	有效范围**	单位				
		标的漂移率系数								
*为2进制补码,最高有效位(MSB)是符号位(+或-)。										
**除非在"有效范围"栏中另有说明,否则参数的有效范围是所给定的位数与比例因子共同确定										
的最大	范围。									

其它 GNSS 以 GNSS ID 区分,其含义为:

000为无效, 表示本组数据不可用;

001 表示 GPS 系统;

010 表示 Galileo 系统;

011 表示 GLONASS 系统;

100~111 为预留。

在一帧中播发的 WN_{0BGTO}、 *t*_{0BGTO}、 *A*_{0BGTO}、 *A*_{1BGTO}、 *A*_{2BGTO} 是针对本帧中 GNSS ID 标 识的系统,不同帧中播发的 GNSS 系统可能不同,用户应当区分接收。

7.12.2 用户算法

北斗时与其它 GNSS 系统时之间转换的时间偏差可由下式实现:

$$\Delta t_{\text{Systems}} = t_{\text{BD}} - t_{\text{GNSS}} = A_{0\text{BGTO}} + A_{1\text{BGTO}} \left[t_{\text{BD}} - t_{0\text{BGTO}} + 604800 (\text{WN} - \text{WN}_{0\text{BGTO}}) \right] + A_{2\text{BGTO}} \left[t_{\text{BD}} - t_{0\text{BGTO}} + 604800 (\text{WN} - \text{WN}_{0\text{BGTO}}) \right]^2$$
(7-25)

式中, $\Delta t_{\text{Systems}}$ 的单位为秒; t_{BD} , t_{GNSS} 分别为 BDT 时间和其它 GNSS 系统时间。

7.13 卫星健康状态

卫星健康状态(HS),共2比特,无符号整型,用于描述本卫星当前健康状态。其定义见表 7-20。

HS 值	定义	说明
0	卫星健康	该颗卫星提供服务
1	卫星不健康或在测试中	该颗卫星不提供服务
2	预留	预留
3	预留	预留

表 7-20 卫星健康状态参数定义

7.14 卫星完好性状态标识

卫星完好性状态采用电文完好性标识(DIF)、信号完好性标识(SIF)和系统告警标识(AIF)三个参数进行描述。三个标识参数均为1比特,其定义见表 7-21。

标识	数值	定义
DIE	0	本信号播发的电文参数误差未超出预测精度
DIFI	1	本信号播发的电文参数误差超出预测精度
QIE	0	本信号正常
SIFI	1	本信号不正常
AIE	0	本信号 SISMAI [*] 值有效
AIrī	1	本信号 SISMAI 值无效
*SISMAI 定义	义见 7.16 节	

表 7-21 卫星完好性状态标识定义

有关参数的具体描述在后续版本中更新。

7.15 空间信号精度指数

空间信号精度描述的是导航电文中播发的轨道和钟差的预测精度,包括 2 个参数, 分别是卫星轨道切向和法向精度(SISA_{oe})、卫星轨道径向和卫星钟差精度(SISA_{oc})。

为计算 SISA_{ce}和 SISA_{cc},导航电文中给出了空间信号精度指数参数,分别为:

- (1) SISAI_{oe}: 卫星轨道的切向和法向精度(SISA_{oe})指数;
- (2) SISAI_{ocb}: 卫星轨道的径向及卫星钟固定偏差精度(SISA_{ocb})指数;
- (3) SISAI_{oc1}: 卫星钟频偏精度(SISA_{oc1})指数;
- (4) SISAI_{oc2}: 卫星钟频漂精度(SISA_{oc2})指数;
- (5) top: 数据预测的周内时刻。

有关参数的具体描述在后续版本中更新。

7.16 空间信号监测精度指数

利用零均值高斯分布模型对空间信号精度的估计误差进行描述,该高斯分布的方 差称为空间信号监测精度(SISMA),用空间信号监测精度指数(SISMAI)表征。

有关参数的具体描述在后续版本中更新。

8 缩略语

BDCS	北斗坐标系(BeiDou Coordinate System)										
PDCIM	北斗全球电离层延迟修正模型(BeiDou Global Ionospheric delay										
BDGIM	correction Model)										
BDS	北斗卫星导航系统(BeiDou Navigation Satellite System)										
BDT	北斗时 (BeiDou Navigation Satellite System Time)										
BGTO	北斗时与其它 GNSS 系统时的偏差(BDT-GNSS Time Offset)										
BPSK	二进制相移键控(Binary Phase Shift Keying)										
CDMA	码分多址(Code Division Multiple Access)										
CGCS2000	2000 中国大地坐标系(China Geodetic Coordinate System 2000)										
CRC	循环冗余校验(Cyclic Redundancy Check)										
ECI	地心惯性(坐标系)(Earth Centered Inertial)										
EOP	地球定向参数(Earth Orientation Parameters)										
GEO	地球静止轨道(Geostationary Earth Orbit)										
GF	伽罗瓦域(Galois Field)										
GLONASS	格洛纳斯卫星导航系统(Global Navigation Satellite System)										
GNSS	全球卫星导航系统(Global Navigation Satellite System)										
GPS	全球定位系统(Global Positioning System)										
ICD	接口控制文件(Interface Control Document)										
IEDS	国际地球自转参考系服务(International Earth Rotation and Reference										
IERS	Systems Service)										
IGSO	倾斜地球同步轨道(Inclined GeoSynchronous Orbit)										
IRM	IERS 参考子午面(IERS Reference Meridian)										
IRP	IERS 参考极(IERS Reference Pole)										
LDPC	低密度奇偶校验(Low Density Parity Check)										
LSB	最低有效位(Least Significant Bit)										
Mcps	百万码片/秒(Mega chips per second)										
MEO	中圆地球轨道(Medium Earth Orbit)										
MJD	约化儒略日(Modified Julian Date)										

MSB	最高有效位(Most Significant Bit)
NTSC	国家授时中心(National Time Service Center)
PRN	伪随机噪声码(Pseudo-Random Noise)
RHCP	右旋圆极化(Right-Hand Circular Polarization)
RMS	均方根(Root Mean Square)
SOW	周内秒计数(Seconds of Week)
TEC	总电子含量(Total Electron Content)
TECu	总电子含量单位(Total Electron Content unit)
UT	世界时(Universal Time)
UTC	协调世界时(Universal Time Coordinated)
WN	整周计数(Week Number)

附录 多进制 LDPC 编译码方法及示例

1. 多进制 LDPC 编码

由多进制 LDPC (*n*,*k*) 编码的校验矩阵 $\mathbf{H} = [\mathbf{H}_1, \mathbf{H}_2]$ 可以计算得到生成矩阵 \mathbf{G} 。再 利用生成矩阵 \mathbf{G} , 对长度为 *k* 的输入信息序列 \mathbf{m} 进行编码,可得到长度为 *n* 的码字。 其中, $\mathbf{c}_j (0 \le j \le n)$ 为码字 \mathbf{c} 中的第 *j* 个码字符号, $\mathbf{p} = \mathbf{m} \cdot (\mathbf{H}_2^{-1} \cdot \mathbf{H}_1)^T$ 为校验序列。

生成矩阵 G 的产生方法如下:

第1步:将大小为 (*n-k*) ×*n* 的矩阵 H 表示为 H = [H₁, H₂],其中 H₁大小为 (*n-k*) ×*k*, H₂大小为 (*n-k*) × (*n-k*);

第 2 步: 将矩阵 H 转化为系统形式,用 H_2^{-1} 左乘 H,得到右边为单位阵的校验矩 阵 $\hat{H} = [H_2^{-1} \cdot H_1, I_{n-k}]$,其中 I_{n-k} 为 (*n-k*) × (*n-k*) 单位阵;

第3步:得到矩阵 **G** = [\mathbf{I}_k ,($\mathbf{H}_2^{-1} \cdot \mathbf{H}_1$)^T],其中 \mathbf{I}_k 为 $k \times k$ 单位阵。

(1) 编码示例

以 B-CNAV3 导航电文采用 64 进制 LDPC(162,81)编码为例,若输入信息为:

[

 001010
 110010
 010011
 100001
 001010
 101000
 101001
 101100
 101111
 011100

 000101
 001110
 111010
 001001
 110100
 100010
 11111
 000101
 011100
 001111
 011101

 000000
 110001
 110100
 110111
 000101
 011001
 011001
 011011
 011011
 01111

 010000
 01001
 01000
 110111
 000101
 011001
 01000
 110111
 010101

 010000
 001001
 01000
 110111
 100101
 100011
 010011
 110101
 010101

 010000
 001001
 010101
 100101
 100101
 010011
 110101
 100000

 011001
 001000
 01111
 000111
 001111
 011001
 010011
 11100
 011111

 011111
 010101
 010111
 000111
 010101
 011001
 011001
 011001
 011001

 011110
 101001
 010111
 000111
 010101
 011001
 010010
 000010
 000100
 001000

];

其对应的 64 进制信息为:

 [10 50 19 33 10 38 16 41 44 47 28 5 14 58 9 52 34 63 5 28 6 61

 0 49 52 55 5 25 16 51 27 58 11 16 9 8 55 37 35 9 54 39 22

 32 25 4 15 7 11 15 26 3 57 60 31 31 21 57 23 7 49 24 15 25

 6 8 60 61 36 3 15 22 52 0 2 10 41 46 41 28 35];

 经过编码, 输出码字为:

[

 001010
 110010
 010011
 100010
 001010
 101100
 101101
 101100
 101111
 011100

 000101
 001110
 111010
 001001
 110100
 100010
 11111
 000101
 011001
 011001
 011001
 011011
 011100
 000101
 111101
 000101
 111111
 000101
 011011
 011011
 011111
 011111
 000101
 011001
 011001
 011011
 011111
 01111
 01111
 01000
 110111
 011011
 011011
 011011
 011011
 011011
 01000
 110111
 010111
 010001
 110101
 010111
 010001
 110101
 010111
 010101
 110101
 000111
 010101
 011011
 010101
 011111
 011001
 000110
 011111
 011001
 011111
 011001
 011011
 011001
 011111
 011001
 011111
 011001
 001101
 011101
 011101
 011101
 011101
 011101
 011101
 011101
 011101
 011101

];

其对应的 64 进制码字为:

[10	50	19	33	10	38	16	41	44	47	28	5	14	58	9	52	34	63	5	28	6	61
	0	49	52	55	5	25	16	51	27	58	11	16	9	8	55	37	35	9	54	39	22
	32	25	4	15	7	11	15	26	3	57	60	31	31	21	57	23	7	49	24	15	25
	6	8	60	61	36	3	15	22	52	0	2	10	41	46	41	28	35	36	46	57	0
	55	1	22	45	50	9	27	9	26	3	11	41	21	31	13	43	30	13	61	31	20
	8	6	36	3	45	12	57	59	23	10	43	45	63	1	60	15	47	10	6	40	56
	24	2	19	19	46	43	19	61	26	1	7	61	11	55	48	43	49	44	50	27	31
	27	12	60	51	58	15	6	29	61	39	38	5	53	34]	0						

(2) 映射关系

64 进制 LDPC 编码后,每个码字符号由 6 比特构成,定义于本原多项式为 *p*(*x*)=1+*x*+*x*⁶的有限域GF(2⁶)。有限域中的每个元素可以采用向量表示法和幂次表示法。 64 个元素的向量表示法到幂次表示法的映射表如下:

[∞ 4 5	0 24 62	1 33 25	6 16 11	2 14 34	12 52 31	7 36 17	26 54 47	3 9 15	32 45 23	13 49 53	35 38 51	8 28 37	48 41 44	27 19 55	18 56 40
10	61	46	30	50	22	39	43	29	60	42	21	20	59	57	58];
	63个	非零え	元素ル	、幂次	表示》	去到向	可量表	示法	的映身	寸表如	下:				
[1	2	4	8	16	32	3	6	12	24	48	35	5	10	20	40
19	38	15	30	60	59	53	41	17	34	7	14	28	56	51	37
9	18	36	11	22	44	27	54	47	29	58	55	45	25	50	39
13	26	52	43	21	42	23	46	31	62	63	61	57	49	33]。	

2. 多进制 LDPC 译码

多进制 LDPC (*n*,*k*) 编码生成的码字 **c** = (**c**₀, **c**₁,...,**c**_{n-1}) 在信号调制后进行信道传输, 经 过 信 道 传 输 后 , 接 收 端 可 得 到 相 应 的 接 收 序 列 **y** = (**y**₀, **y**₁,...,**y**_{n-1}) 。 其 中 , $\mathbf{y}_{j} = (y_{j,0}, y_{j,1}, ..., y_{j,r-1})$ 为码字符号 **c**_j 对应的信道接收信息, **c**_j \in GF(*q*), *q* = 2^{*r*}, 0 \leq *j* < *n* 。

利用多进制 LDPC 码的校验矩阵 H 可以对接收序列 Y 进行校验,具体方法是:对接收序列 Y 进行逐比特硬判决,得到硬判决码字 $\hat{c} = (\hat{c}_0, \hat{c}_1, ..., \hat{c}_{n-1})$,据此计算校验和 $s = \hat{c}H^T$ 。若 s = 0,则将 \hat{c} 作为正确的译码结果输出,否则表明 \hat{c} 是错误的译码信息。

校验矩阵 H 给出了 LDPC 码校验节点和变量节点之间的连接关系,相互连接的校验节点和变量节点之间能够传递置信度信息。对于大小为 *m×n* 的校验矩阵 H,记 *h_{i,j}* ∈ GF(*q*)为 H 矩阵中第 *i* 行第 *j* 列的元素, H 中的每一行对应一个校验节点 CN,每 一列对应一个变量节点 VN。两个序数集合定义如下:

 $M_{j} = \{i : 0 \le i < m, h_{i,j} \ne 0\}, 0 \le j < n$ $N_{i} = \{j : 0 \le j < n, h_{i,j} \ne 0\}, 0 \le i < m$

(1) 扩展最小和法

设加性高斯白噪声信道的噪声均值为 0, 方差为 σ^2 。根据每个码字符号对应的接 收符号向量 $\mathbf{y}_{\mathbf{j}}$ 计算其置信度向量 $\mathbf{L}_{\mathbf{j}}$ 。所有 q 个有限域元素 $x \in GF(q)$ 及其对应的对数 似然比(LLR)值 LLR(x)一起构成了置信度向量 $\mathbf{L}_{\mathbf{j}}$,其中向量 $\mathbf{L}_{\mathbf{j}}$ 的第 l 个元素 ($0 \le l < q$)由第 l 个有限域符号 x 及其 LLR 值组成。置信度向量 $\mathbf{L}_{\mathbf{j}}$ 中有限域元素 x 的 对数似然比为:

LLR(x) = log(
$$\frac{P(\mathbf{y}_{j} | \hat{x})}{P(\mathbf{y}_{j} | x)}$$
) = $\frac{2\sum_{b=0}^{r-1} |y_{j,b}| \Delta_{j,b}}{\sigma^{2}}$

其中, $\hat{x} \in GF(q)$ 中使概率 $P(\mathbf{y}_{j} | x)$ 最大的有限域元素,即直接对接收符号 \mathbf{y}_{j} 逐比特作硬判决得到的元素。有限域元素 $x \ \pi \hat{x}$ 对应的比特序列分别为 $x = (x_{0}, x_{1}, ..., x_{r-1})$ 和 $\hat{x} = (\hat{x}_{0}, \hat{x}_{1}, ..., \hat{x}_{r-1}), \quad \Delta_{j,b} = x_{b} \text{ XOR } \hat{x}_{b}, \text{ XOR }$ 为异或运算,即若 x_{b} 和 \hat{x}_{b} 相同则 $\Delta_{j,b} = 0$, 否则 $\Delta_{j,b} = 1$ 。

在扩展最小和译码算法中,传递的置信度向量 L_j 的长度从 q 个有限域元素减至 n_m ($n_m \ll q$) 个,即在置信度向量中只保留 LLR 值最小(即置信度最高)的 n_m 个元素。 扩展最小和译码的算法流程如下:

初始化:设置最大迭代次数 itr_{max} ,当前迭代次数itr=0。根据接收向量 y_j 计算置 信度向量 L_j ($0 \le j \le n$)。利用 L_j 初始化各变量节点 VN_j 的所有 $V2C_{j \to i}$ 向量。

第1步:对各变量节点 VN_j ($0 \le j < n$),根据变量节点更新规则计算判决符号 \hat{c}_j 与置信度向量 $V2C_{i \rightarrow i}$ 。

第2步:利用多进制 LDPC 码的校验矩阵 H,计算校验和 s = ĉH^T。若 s = 0,则将 判决值序列 ĉ 作为译码输出并终止译码;否则执行第3步。

第3步:对各校验节点CN_i (0≤*i*<*m*),根据校验节点更新规则计算置信度向量 C2V_{i→i}。

第4步:令itr=itr+1。若itr=itr_{max},则终止译码并声明失败;否则转至第1步。

1) 变量节点更新规则

若当前迭代次数 itr=0,对于每个码字符号的置信度向量 L_i ,按照其 q 个有限域元素的 LLR 值进行升序排列,取排序后 L_i 中的前 n_m 个元素构成截断置信度向量 $L_{j,n_m} = (\mathbf{x}_{n_m}, LLR(\mathbf{x}_{n_m}))$ 。将V2C_{j→i}初始化为 L'_{j,n_m} :

 $V2C_{j \to i} = \mathbf{L}'_{\mathbf{j}, \mathbf{n}_{\mathrm{m}}} = \mathbf{L}_{\mathbf{j}, \mathbf{n}_{\mathrm{m}}} \cdot h_{i, j} = (\mathbf{x}_{\mathbf{n}_{\mathrm{m}}} \cdot h_{i, j}, \mathrm{LLR}(\mathbf{x}_{\mathbf{n}_{\mathrm{m}}}))$

其中, \mathbf{x}_{n_m} 为被截取的前 n_m 个有限域元素组成的向量, \mathbf{x}_{n_m} · $h_{i,j}$ 为截取的 n_m 个有限域元素与 $h_{i,j}$ 的有限域乘法。

若当前迭代次数 itr $\neq 0$,设 C2V_{f→j} 是校验节点 CN_f 传递给相连变量节点 VN_j 的长度为 n_m 的置信度向量,利用 VN_j 收到的所有置信度向量 C2V_{f→j} ($f \in M_j, f \neq i$),计算 VN_j 传递给相连校验节点 CN_i 的置信度向量 V2C_{j→i}:

 $\mathrm{V2C}_{j \to i} = h_{i,j}. \left(\sum_{f \in M_j, f \neq i} \mathrm{C2V}_{f \to j}. h_{f,j}^{-1} + \mathbf{L}_{j} \right)_{n_m} = (\mathbf{Rs}_{j \to i}, \mathbf{R}_{j \to i})$

其中,有限域元素 $h_{f,j}^{-1}$ 是 $h_{f,j}$ 的逆元,即 $h_{f,j}^{-1}$ · $h_{f,j}$ =1。上式中的加和运算将各置信度 向量 C2V_{f→j}· $h_{f,j}^{-1}$ 中相同元素的 LLR 值进行相加,(•)_n 操作表示将置信度向量中的元素进 行升序排序并截取前 n_m 个元素,且这 n_m 个有限域元素互不相同。**Rs**_{j→i} 是前 n_m 个有限域 元素组成的向量,**R**_{j→i} 是对应的 LLR 值向量。被置信度向量 C2V_{f→j} 舍弃的 $q-n_m$ 个有 限域元素的 LLR 值取为 C2V_{f→j} 中最大的 LLR 值与一个固定偏移量之和。在每个置信度 向量 V2C_{j→i} 计算完成后,找到该置信度向量中 LLR 的最小值 LLR_{min},将该置信度向量 中各元素的 LLR 值减去 LLR_{min}。

此外,每个变量节点在每次计算时都进行一次判决,选取长度为 q 的置信度向量 $\{\sum_{i \in I} C2V_{f \to j}, h_{f,j}^{-1} + L_i\}$ 中 LLR_{min} 对应的有限域元素作为判决值,判决公式为:

 $\hat{\mathbf{c}}_{\mathbf{j}} = \arg\min_{x \in \mathrm{GF}(q)} \{\sum_{f \in M_{j}} \mathrm{C2V}_{f \to j} \cdot h_{f,j}^{-1} + \mathbf{L}_{\mathbf{j}}\}, 0 \le j < n$

判决符号 $\hat{\mathbf{c}}_i$ 与置信度向量 $V2C_{j \to i}$ 一起传递给对应的校验节点。检查当前迭代译码结果 $\hat{\mathbf{c}}=(\hat{\mathbf{c}}_0, \hat{\mathbf{c}}_1, ..., \hat{\mathbf{c}}_{n-1})$ 是否能通过校验矩阵校验,即 $\mathbf{s}=\hat{\mathbf{c}}\mathbf{H}^{\mathrm{T}}$ 是否为零向量。

2) 校验节点更新规则

对每个校验节点 CN_i ($0 \le i < m$),接收所有与之相连的变量节点传递的置信度向量 $V2C_{j \to i}$,计算置信度向量 $C2V_{i \to j}$:

$$C2V_{i \to j} = \sum_{\gamma \in N_i, \gamma \neq j} V2C_{\gamma \to i}$$

其中,每次加和运算定义为校验节点基本计算:输入两个*n*_m长的置信度向量(各包含*n*_m长的有限域元素向量及对应的LLR 向量),对来自不同置信度向量的有限域元素做加法得到候选元素并计算对应的LLR 值,将所有候选元素的LLR 值升序排列,截取前*n*_m个最小的LLR 值及其对应的有限域元素构成输出置信度向量。设校验节点基本计算的输入置信度向量分别为(U_s,U)和(Q_s,Q),输出置信度向量为(V_s,V),其中U,Q,V为升序排列的*n*_m长LLR 向量,U_s,Q_s,V_s为相对应的有限域元素向量。根据输入置信度向量,构建大小为*n*_m×*n*_m的置信度矩阵 M 和有限域元素矩阵M_s。M_s和 M 的计算公式为:

$$M_{s}[d,\rho] = U_{s}[d] \oplus Q_{s}[\rho]$$
$$M[d,\rho] = U[d] + Q[\rho]$$

其中, $d, \rho \in \{0, 1, ..., n_m - 1\}$, \oplus 为有限域加法。 校验节点基本计算的公式为:

BDS-SIS-ICD-B2b-1.0 2020-07 $V[\varepsilon] = \min_{d \ o \in [0]} \{M[d, \rho]\}_{V_s[\varepsilon] = M_s[d, \rho]}, 0 \le \varepsilon < n_m$

上式的具体实现可以通过对大小为n"的寄存器S进行如下操作完成:

初始化:将M的第1列存入S,使S[ζ]=M[ζ ,0], $\zeta \in \{0,1,\dots,n_m-1\}$ 。令 $\varepsilon = 0$ 。

第1步:找到S中的最小值。(假设 *M*[*d*, *ρ*] 对应S中的最小值)。

第2步: 若S中最小值对应的有限域元素不存在于向量V,中,则将S中的最小值给 $V[\varepsilon]$,将对应的有限域元素给 $V_s[\varepsilon]$, $\varepsilon = \varepsilon + 1$;否则,不执行操作。

第3步:将S中的最小值替换为其在M中对应元素的右边元素,(即假设当前S中的最小值为*M*[*d*,*ρ*],则将其替换为*M*[*d*,*ρ*+1])。

第4步:转至第1步,直到ε=n_m。

(2) 固定路径译码算法

固定路径译码算法是一种高效的译码算法,其整个算法流程和扩展最小和译码算法一致。不同的地方在于具体的校验节点更新规则。以校验节点的行重值 d_c=4 为例(即每个校验节点接收到 4 个输入信息向量),固定路径译码算法校验节点更新规则介绍如下:

对于每个校验节点 CN_i ($0 \le i < m$),利用与之相连的变量节点传递的 4 个置信度 向量 $V2C_{j \to i} = (\mathbf{Rs}_{j \to i}, \mathbf{R}_{j \to i})$ ($j \in N_i$),计算长为 8+2 n_m 的固定路径偏差值向量 $\mathbf{E}_i = (\mathbf{Rs}_i, \mathbf{R}_i)$,其中 \mathbf{Rs}_i 是长度为 8+2 n_m 的有限域元素向量(向量中可能存在重复的有限域元素), \mathbf{R}_i 是对应的 LLR 向量。

每次计算时,将4个置信度向量 V2C_{j→i}按照其第二个元素 V2C_{j→i}[1]=($R_{s_{j→i}}$ [1], $R_{j→i}$ [1]) (索引下标为1)的LLR 值 $R_{j→i}$ [1]从小到大排序,排序后的4个新向量定义为($R_{s_{Li}}, R_{Li}$), 0≤*l*<4,即 $R_{0,i}$ [1]≤ $R_{1,i}$ [1]≤ $R_{2,i}$ [1]≤ $R_{3,i}$ [1]。其中, $R_{s_{Li}}$ 为排序后的 n_m 长度的有限域元素 向量, $R_{1,i}$ 是对应的LLR 向量。根据4个新向量($R_{s_{Li}}, R_{Li}$)计算固定路径偏差值向量 $E_i = (Rs_i, R_i)$,各元素 Rs_i [e]及其LLR 值 R_i [e]计算公式为

	$\left(\sum_{0\leq l\leq 4} Rs_{l,i}\left[0\right]\right)$,		e = 0
	$\left \frac{Rs_{e-1,i}}{Rs_{e-1,i}} \right \oplus $	$\sum_{0 \le l < 4, l \ne e^{-1}} Rs_{l,i} [0],$		$1 \le e \le 4$
	$Rs_{0,i}[1] \oplus Rs$	$S_{e-4,i}\left[1\right] \oplus \sum_{1 \le l < 4, l \ne e-4}$	$Rs_{l,i}[0],$	$5 \le e \le 7$
$Rs_i[e] = c$	$Rs_{0,i}[0] \oplus R$	$s_{1,i}[1] \oplus Rs_{2,i}[1] \oplus$	$Rs_{3,i}[0],$	<i>e</i> = 8
	$\Big Rs_{0,i} [0] \oplus R$	$s_{1,i}[1] \oplus Rs_{2,i}[0] \oplus$	$Rs_{3,i}[1],$	<i>e</i> = 9
	$Rs_{e-10,i}[2]$	$\sum_{0 \le l < 4, l \neq e-10} Rs_{l,i} [0],$		$10 \le e < 14$
	$Rs_{\theta,i}[e-11]$	$\oplus \sum_{0 \le l < 4, l \ne \theta} Rs_{l,i} [0],$		$14 \le e < 11 + n_m$
	$Rs_{\beta,i}[e-8-$	$[n_m] \oplus \sum_{0 \le l < 4, l \ne \beta} Rs_{l,i}$	[0],	$11+n_m \le e < 8+2n_m$
		0,	<i>e</i> =	0
		$R_{e-1,i}[1],$	$1 \le e \le$	4
		$R_{0,i}[1] + R_{e-4,i}[1],$	$5 \le e \le$	7
	$R_i[e] = -$	$R_{1,i}[1] + R_{e-6,i}[1],$	$8 \le e \le 9$	9
		$R_{e-10,i}[2],$	$10 \le e <$	14
		$R_{\theta,i}[e-11],$	$14 \le e <$	$11 + n_m$
		$\Big[R_{\beta,i}\big[e-8-n_m\big],$	$11 + n_m \leq e <$	$(8+2n_m)$

其中, θ 和 β 分别表示全部 $\mathbf{R}_{l,i}$ 向量中第 $\lfloor n_m/2 \rfloor$ +1个 LLR 值 (索引下标为 $\lfloor n_m/2 \rfloor$) 的最小值和次小值所对应的 $\mathbf{R}_{l,i}$ 向量下标 l, 加和运算及 \oplus 为有限域加法运算。

设定两个长为 $8+2 n_m$ 的标志向量 T 和 $\bar{\mathbf{T}}$ 并将其初始化为全 1 向量。对于 $0 \le k_R < 8+2n_m$,标志向量 T 和 $\bar{\mathbf{T}}$ 的更新公式为:

$$T[k_{R}] = \begin{cases} 1, R_{i}[k_{R}] \leq R_{\theta,i}[\lfloor n_{m} / 2 \rfloor] \\ 0, R_{i}[k_{R}] > R_{\theta,i}[\lfloor n_{m} / 2 \rfloor] \end{cases}$$
$$\overline{T}[k_{R}] = \begin{cases} 1, R_{i}[k_{R}] \leq R_{\beta,i}[\lfloor n_{m} / 2 \rfloor] \\ 0, R_{i}[k_{R}] > R_{\beta,i}[\lfloor n_{m} / 2 \rfloor] \end{cases}$$

根据固定路径偏差和标志向量更新 4 个长度为 n_m 的输出置信度向量 $(Us_{i,l}, U_{i,l})$, 计 算公式为:

$$\mathbf{Us_{i,l}} = (Rs_i [w] \oplus Rs_{l,i} [0])_{n_m}$$
$$\mathbf{U_{i,l}} = (R_i [w])_{n_m}$$

其中, $0 \le l < 4$; w的取值范围由不同的情况决定,对于l = 0的情况,如果 $\theta \neq 0$, w的取值范围为:

 $\{w \mid T[w] = 1\} \cap \{\{w = 0\} \cup \{1 < w \le 4\} \cup \{8 \le w < 10\} \cup \{10 < w < 11 + n_m\}\}$

否则, w的取值范围为:

 $\{w|\bar{T}[w]=1\} \cap \{\{w=0\} \cup \{1 < w \le 4\} \cup \{8 \le w < 10\} \cup \{10 < w < 14\} \cup \{w \ge 11 + n_m\}\}$ 对于 1 ≤ *l* < 4 的情况,如果 *l* = θ 时, w的取值范围为

 $\{w|\overline{T}[w]=1\} \cap \{\{0 \le w \le 7\} \cup \{10 \le w < 14\} \cup \{w \ge 11+n_m\}\} \cap \{\{w \ne l+1\} \cap \{w \ne 4+l\} \cap \{w \ne 10+l\}\}$ 否则 w 的取值范围为:

 $\{w | T[w] = 1\} \cap \{\{0 \le w \le 7\} \cup \{10 \le w < 11 + n_m\}\} \cap \{\{w \ne l+1\} \cap \{w \ne 4+l\} \cap \{w \ne 10+l\} \}$ $Us_{i,l}[z]$ ($0 \le z < n_m$) 对应于 w 的前 n_m 个最小值计算得到的 $Rs_i[w] \oplus Rs_{l,i}[0]$, 且不需要排除 $Us_{i,l}[z]$ 中相同的元素, $U_{i,l}[z]$ 是 $Us_{i,l}[z]$ 对应的 LLR 值。

计算得到的 4 个向量($Us_{i,i}, U_{i,i}$)的排列顺序与 4 个排序后的输入向量($Rs_{i,i}, R_{i,i}$) — 对应。因为每一个输入向量($Rs_{i,i}, R_{i,i}$) 对应一个 $V2C_{j \to i}$ 向量,根据置信度向量 $V2C_{j \to i}$ 与($Rs_{i,i}, R_{i,i}$)的之间的排列顺序,更新输出置信度向量 $C2V_{i \to j} = (Us_{i,i}, U_{i,i}), (j \in N_i)$ 。